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1. 

A circular, solid or annular plate of uniform or non-uniform thickness is probably one
of the most common elements that Man has devised in his pursuit of either scientific or
technological goals; from optical lens to printed circuit boards passing through pistons of
gasoline and diesel engines and compressors, acoustic transducers foundation of
machinery, rocket and heart prothesis elements, etc.

In most of these applications the plate performs its function in a dynamic fashion and
the design engineer needs an adequate knowledge of its natural vibrational characteristics
(frequencies and mode shapes).

On the other hand, several complicated factors may come into play: uniform or
non-uniform elastic constraints at the plate edge, presence of elastically or rigidly
connected masses, in-plane forces, etc.

When the plate material is isotropic and the structural element possesses uniform
thickness, many basic dynamic problems are solved in a classical fashion using Bessel
functions [1]. On the other hand if the plate material is characterized as aelotropic, or
polarly orthotropic, exact analytical solutions are available for many important structural
situations [2]. Certainly the case of a circular plate of polar orthotropy carrying a central,
concentrated mass and executing transverse vibrations is amenable to a straightforward
approximate solution using simple polynomial coordinate functions [3].

The present study proposes a simple approach for determining the fundamental
frequency of transverse vibration of a circular plate of rectangular orthotropy carrying a
central, concentrated mass (Figure 1). This problem is also of basic technological
importance since steel and aluminum plates do possess, in general, rectangularly
orthotropic characteristics due to the metallurgical processes to which they have been
exposed.*

Since the boundary of the domain is not natural to the material coordinate axes it seems
appropriate to express the plate displacement amplitude in terms of polynomials in the x
and y coordinates. Clamped and simply supported edges have been assumed. The
frequency determinant has been generated using the classical Rayleigh–Ritz method. The
evaluation of the integrals appearing in the functional has been greatly facilitated by the
use of MAPLE [4].

* Certainly, the situation is also of interest when dealing with composite materials.
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2.   

Using Lekhnitskii’s classical notation [2] one expresses the governing functional in the
form
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where W(x, y) is the amplitude of transverse vibration and M is the concentrated mass.
In the case of a clamped edge the displacement amplitude is approximated using the

polynomial expression
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Figure 1. Circular plate of rectangular orthotropy carrying a concentrated mass at its centre. (a) Clamped;
(b) simply supported.
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T 1

Isotropic circular plate with a central, concentrated mass (n2 = n=0·30): comparison of
values of the fundamental frequency coefficient V1 =zrh/Dv1a2 as a function of M/Mp

Number of terms
ZXXXXXXCXXXXXXV

M/Mp 3 7 9 [5] Exact

Clamped 0 10·217 10·216 10·216 10·22 10·215
0·05 9·046 9·028 9·026 9·01
0·10 8·188 8·151 8·148 8·11
0·20 7·006 6·944 6·937 6·87
0·5 5·204 5·121 5·112 5·02

Simply supported 0 4·940 4·937 4·93 4·935
0·05 4·562 4·553
0·10 4·259 4·243 4·23
0·20 3·797 3·772 3·75
0·5 2·986 2·948 2·92

M=concentrated mass; Mp =plate mass.

while, when dealing with the simply supported plate, W is expressed in the form
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Clearly, expression (2) satisfies both essential governing boundary conditions at r= a:

W=
1W
1r

=0 (4)

while equation (3) satisfies the null displacement requirement at the plate edge but not the
natural boundary condition which requires that the bending moment normal to the
boundary be equal to zero.

Substituting Wa , as given by equations (2) or (3), in the energy functional (1) and
requiring that

1J[Wa ]
1ai

=0, (5)

one obtains a linear, homogeneous system of equations in the ai ’s. A determinantal
equation is finally obtained from the non triviality condition, its lowest root being the
fundamental frequency coefficient V1 =zrh/D1v1a2.

3.  

In the case of a clamped edge the eigenvalues were determined using 3, 7 and 9 terms,
respectively, while, when dealing with a hinged boundary, the fundamental frequency
coefficients were determined using approximations of 3 and 7 terms.† In all cases the
numerical values were truncated after the third decimal figure.

† Previous studies have shown that the present polynomial approach converges faster in the case of a simply
supported edge [5].
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T 2

Orthotropic circular plate with a central, concentrated mass (D2/D1 =Dk /
D1 =0·5; n2 =0·30): analysis of the convergence of the values of V1 =zrh/

D1v1a2

Number of terms
ZXXXXXXXCXXXXXXXV

M/Mp 3 7 9

Clamped 0 9·619 9·619 9·618
0·05 8·513 8·492 8·490
0·10 7·703 7·661 7·656
0·20 6·588 6·517 6·509
0·5 4·890 4·797 4·786

Simply supported 0 4·483 4·482
0·05 4·142 4·138
0·10 3·868 3·859
0·20 3·451 3·433
0·5 2·716 2·686

Table 1 depicts a comparison of eigenvalues for clamped and simply supported isotropic
plates (n=0·30). There is good engineering agreement with values previously determined
using the optimized Galerkin approach where all the governing boundary conditions were
satisfied [5].

Tables 2 and 3 deal with orthotropic circular plates: D2/D1 =Dk /D1 =0·5 and
D2/D1 =1; Dk /D1 =0·5, respectively, while n2 was taken equal to 0·3 for both
configurations. It can be seen that the effect of increasing the number of terms is greater
as M/Mp increases.

The present approach is quite simple and straightforward specially when using an
oriented mathematical algorithm [4]. The case of elliptical plates constitutes, obviously, an
extension of the present treatment.

T 3

Orthotropic circular plate with a central, concentrated mass (D2/D1 =1;
Dk /D1 =0·5; n2 =0·30): analysis of the convergence of the values

of V1 =zrh/D1v1a2

Number of terms
ZXXXXXXXCXXXXXXXV

M/Mp 3 7 9

Clamped 0 10·593 10·592 10·592
0·05 9·379 9·359 9·358
0·10 8·490 8·450 8·446
0·20 7·264 7·196 7·189
0·5 5·396 5·306 5·296

Simply supported 0 4·978 4·977
0·05 4·600 4·593
0·10 4·296 4·283
0·20 3·833 3·811
0·5 3·017 2·982
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